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Abstract

For the majority of data mining applications,there are
nomodelsofdatawhich wouldfacilitatethetaskof compar-
ing recordsof timeseries.We proposea genericapproach
to comparingnoisetimeseriesusingthelargestdeviations
from consistentstatisticalbehaviour. For this purposewe
usea powerfulframeworkbasedonwaveletdecomposition,
which allowsfiltering polynomialbias,while capturingthe
essentialsingular behaviour. In addition, we are able to
revealscale-wiserankingof singulareventsincludingtheir
scalefreecharacteristic: theHölderexponent.Weusea set
of such characteristicsto designa compactrepresentation
of thetimeseriessuitablefor directcomparison,e.g. eval-
uationof thecorrelationproduct. We demonstratethat the
distancebetweensuch representationscloselycorresponds
with thesubjectivefeelingof similarity betweenthetimese-
ries. In order to testthe validity of subjectivecriteria, we
testthe records of currencyexchanges,finding convincing
levelsof (local) correlation.

Note: This work has beencarriedout under the Impact
project.

1. Introduction

Theimportanceof similarity measuresin datamining is
easilyunderestimated.This is causedby thefact thatmost
algorithmsassumerelationaldataandthe similarity is im-
plicitly measuredby similarity (or evenequality)of values
for givenattributes.However, the importanceof similarity
measuresbecomesapparentthemomentoneconsidersmin-
ing non-relationaldata,suchastime series.In suchcases,
patternsshoulddescribesetsof timeserieswith similarbe-
haviour and,thus,asimilarity measureis necessary.

This similarity measurecouldbe implicit in completely
new algorithmswhichwork for thisspecialtypeof data.Or,

thesimilaritymeasurecouldbeexplicit andusethestandard
datamining algorithms. In the context of time series,one
wayto achievethis is to extracta(fixed)numberof features
from thetimeseriessothatsimilar timeserieshave similar
features(e.g.,asnumericalvalues)andvice-versa.This is
the approachwe, andothers[1, 2, 3, 4, 5], follow in our
research.In otherwords,wewantto definethesimilarity of
timeseriesthrougha numberof features.

In general,theissueof quantitativesimilarity estimation
betweentime seriesin datamining applicationsseemingly
suffers from a seriousinternal inconsistency: on the one
hand,onewantsthesimilarity to beindependentof a large
classof lineartransformationslike(amplitude,time)rescal-
ing, additionof lineartrendor constantbias.This is under-
standablesincemostsuchoperationsaffect the parameter
valuesof commonlyusedestimators(e.g.powerspectrum),
or destroy any stationaritypotentiallypresentin thetimese-
riesmakingestimationimpossible.On theotherhand,the
subjective,qualitative judgementof similarity (by humans)
is basedpreciselyon non-stationarybehaviour; rapid tran-
sientsmarking beginningsof trends,extremefluctuations
andgenerallyspeaking,largebut rareevents.

Suchlocal fluctuations,characteristicfor singlerealisa-
tions, usuallymake statisticalestimationsdifficult andre-
sult in unreliableestimates. In particular, it is common
knowledge that the evaluationof data distributions from
shortdatasetsis an awkward task, resultingin unreliable
estimates.Thereasonfor this is limited statistics,in which
local fluctuationsof the dataoverrideconsistentstatistical
behaviour. However, what is of greatdisadvantagefrom a
statisticalpointof view canbeof advantagein anothercon-
text. In this paper, we proposea methodof characterising
thetimeserieswhichreliesonsuchdeviationsfromthecon-
sistentstatisticalbehaviour ascausedby thenon-stationary
behaviour of the data. We will show how large local fluc-
tuationsin relatively short datasetscarry the relevant in-
formationaboutthetransient‘shape’of thetime series.In
particular, we canthenmake useof themin order to pro-
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videa verycompactsetof characteristicsof thetimeseries
usefulfor correlationor matchingpurposes.

But whatif thetimeseriesdatain ourapplicationis long
enoughto resultin goodstatisticalestimates?Thewaytogo
is, of course,to reducethedatalengthin orderto increase
the influenceof large local fluctuations! Whatsoundsun-
reasonable,is perfectlyadmissibleandtechnicallypossible,
by theoperationof coarsegrainingthedatausingso-called
waveletfilters, in the Wavelet Transformationscheme.In
this paper, we will demonstratehow the Wavelet Trans-
form resultingfrom scale-wisedecomposingof time series
dataprovidesa naturalway to obtainscale-wiserankingof
eventsin the time series.In additionto this, by evaluating
both the local scalingestimatesandthespectraldensityof
singularbehaviour in the time series,we will be able lo-
cally to indicaterareeventsin time series.Thesewill next
beusedfor thepurposeof (locally) correlatingtime series
usinglargeor rareevents.

In section2, we will focuson therelevantaspectsof the
wavelet transformation,in particularthe ability to charac-
terisescalefree behaviour of characteristiceventsin time
series,like ‘crash’singularities.Thelink betweensuchsin-
gularitiesand the non-stationarybehaviour of time series
will bepostulated,andtogetherwith thehierarchicalscale-
wise decompositionprovided by the wavelet transform,it
will enableusto selecttheinterestinglargescalefeatures.

In section3, wewill discusstheh-representationof time
series,utilising the large scalecharacteristicswith expo-
nentsproperlyestimated.The issuesof distancemetric in
the representationandthat of correlationbetweenthe rep-
resentationswill beaddressedin section4. This is followed
by the test caseof correlatingexamplesof currency ex-
changerates. Section5 closesthe paperwith conclusions
andsuggestionsfor futuredevelopments.

2. Continuous Wavelet Transform and its Max-
ima Used to Reveal the Structure of the
Time Series

As already mentioned above, the recently introduced
Wavelet Transform(WT), seee.g. Ref. [6, 7], provides
a way of analysingthe local behaviour of functions. In
this,it fundamentallydiffersfrom globaltransformslikethe
FourierTransform.In additionto locality, it possessesthe
often very desirableability of filtering the polynomialbe-
haviour to somepredefineddegree.Therefore,correctchar-
acterisationof time seriesis possible,in particularin the
presenceof non-stationaritieslike globalor local trendsor
biases.Oneof theaspectsof theWT which is of greatad-
vantagefor ourpurposeis theability to revealthehierarchy
of (singular)featuresincludingtheirscalingbehaviour - the
so-calledscalefreebehaviour.

Conceptually, the wavelet transform is a convolution
productof the time serieswith the scaledand translated
kernel - the wavelet
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, usually a � -th derivative of a

smoothingkernel � ����� . Usually, in theabsenceof othercri-
teria, thepreferredchoiceis thekernelwell localisedboth
in frequency andposition. In this paper, we have chosen
theGaussian� �	����

�������������������

asthesmoothingkernel,
whichhasoptimallocalisationin bothdomains.

Thescalingandtranslationactionsareperformedby two
parameters;thescaleparameter� ‘adapts’thewidth of the
waveletkernelto themicroscopicresolutionrequired,thus
changingits frequency contents,and the location of the
analysingwaveletis determinedby theparameter� :
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where �0"#��132 and �54
6 for thecontinuousversionof the
WaveletTransformation(CWT).

Figure 1. Contin uous Wavelet Transf orm rep-
resentation of the random walk (Brownian
process) time series. The wavelet used is
the Mexican hat - the second deriv ative of
the Gaussian kernel. The coor dinate axis are:
position

�
, scale in logarithm 7980: � � � , and the

value of the transf orm
�! � ��"#� � .

In figure1, we show thewavelet transformof a random
walk sampledecomposedwith the Mexican hat wavelet -
thesecondderivativeof theGaussiankernel.Fromthedef-
inition, thetransformretainsall thetemporallocality prop-
erties- the positionaxis is in the forefront of the 3D plot.
Thestandardway of presentingtheCWT is usingtheloga-
rithmic scale,thereforethescaleaxispointing‘in depth’of
theplot is log(s).Thethird verticalaxisdenotesthemagni-
tudeof thetransform

� � ��";� � . The3D plot shows how the
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wavelettransformrevealsmoreandmoredetailwhile going
towardssmallerscales,i.e. towardssmaller 7<8�: � � � values.
Therefore,the wavelet transformis sometimesreferredto
asthe‘mathematicalmicroscope’,dueto its ability to focus
on weaktransientsandsingularitiesin thetime series.The
wavelet useddeterminesthe opticsof the microscope;its
magnificationvarieswith thescalefactor � .

A useful representationwhich canbe derived from the
CWT andwhich is of muchlessredundancy thantheCWT
is theWaveletTransformModulusMaxima(WTMM) rep-
resentation,introducedby Mallat [8]. In additionto transla-
tion invariance,it alsopossessestheability to characterise
localsingularbehaviour of timeseries.
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Figure 2. WTMM representation of the time
series and the bifur cations of the WTMM tree .
Mexican hat wavelet.

It consistsof themaximalinesextractedfrom theCWT,
seefigure 2. Eachline is constructedfrom local maxima
of theCWT with respectto thetime coordinate,connected
alongthescale.It canbeshown thateachsucha maximum
lineconvergestoasingularityin thetimeseries= , thusmak-
ing possiblethelocalisationof thesingularity. Moreover, it
canbeusedfor theevaluationof theHölderexponentof the
singularity:

�?><@�A� � ��" �CBD�FE?G � G H ><IDJKA "
if L ���CBM�ON �QP % , where� indicatesthenumberof thevan-
ishingmomentsof thewavelet(in theorderof thederivative
of Gaussiankernel + @ �

�	�-�R�
+
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in our case).Themeaning
of the Hölder exponentcanbe looselyassociatedwith the
feeling of local roughnessor regularity of the time series.
ThehighertheHölderexponent,themoresmoothandreg-
ular thetimeseriesin
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on conditionthat thenumberof vanishingmomentsof thewavelet is
sufficient.

Supposethe time seriescan be locally approximated
with the Taylor seriesexpansionof

 
around

�CB
up to the

order � :
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Of course,if L ���CB�� is smootherthansome� -th degreepoly-
nomial, thepolynomialbiashasto be removedin orderto
accessthesingularbehaviour L �	�CB�� . This is why weareus-
ing a waveletwith � vanishingmoments,which effectively
filters the � -th degreepolynomialsbiasin thetimeseries.

3. The h-Representation

As alreadydiscussedin section2, the wavelet trans-
form removes the polynomial bias, but at the sametime
it effectively ‘compresses’the informationaboutthe ‘non-
stationarity’into a pieceof local information.Moreover, it
revealsthescale-wiseorganisationof singularities,thusal-
lowing for theselectionof theinterestingstrongestevents.

In oderto arrive at a very compactrepresentationof the
timeseries,onewould like to includea certain(predefined)
numberof suchfeaturesin it. Theh-representation,aswe
will call it, will be obtainedby meansof selectinga pre-
definednumberof strongestmaximaandthentracingthem
below the representationscaleat which they appear, thus
allowing betterlocalisationof singularfeaturesin the time
domainanda morestableestimationof the L exponent.

�
For thesake of comparison,we plot in figure3 left, the

samplingof the input time serieswith % 6 and
�0]

maxima
first appearingwhile going down from the highestscale-
lowest resolution. Thereis a substantialamountof detail
addedto the‘approximation’with

�0]
maximacomparedto

thatwith % 6 , neverthelessthestrongestfeaturesremainun-
changed.In figure3 right, we comparethesamplingwith
the % 6 strongestmaximaagainstthe original time series.
Again, the largestfeaturesare well capturedby the sam-
pling proposed.

Note that it is not the valuesof the function which are
retainedfor thesake of representingthetimeseries,but the
corresponding(effective) Hölderexponent.Indeed,gener-
ally wewouldnotwantto bedependenton theexactvalues
of thetimeseries,but ratheremploy thescalefreecharacter-
istics,locally independentof verticalrescalingandpolyno-
mial bias. Eventhoughwe discardtheactualvaluesof the
wavelet transformat the chosenmaximapoints, the signs
of thesevaluesaretakeninto therepresentation.Theinfor-
mationcarriedby the sign is complementaryto that in the
Hölderexponent- the pair ( L ����^_� ,sign(

�! �	��^`�
)) is some-

what reminiscentof the (amplitude,phase)in the Fourier
Transform. In particular, the sign will allow us to distin-
guishthetimeseries

 �	�-�
andits invertedversion

�  �	�-�
.a

For practicaldetailsonh-exponentestimationsee[9, 10].
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Figure 3. Top: the ‘appr oximation’ of the time
series using the % 6 strong est maxima, over-
layed onto the ‘appr oximation’ using all

�0]
maxima at the scale considered 7980: � � �b
dc

.
Bottom: the ‘appr oximation’ of the time se-
ries using the strong est % 6 maxima, overlayed
onto the original time series.

In conclusionto theaboveconsiderations,wecandesign
ourh-representationtocontainthesetof acertainnumberof
thelargestfeaturesof thetime seriesat hand.Theparame-
terscodedarethe

�
-coordinate

� ^
of theselectedmaximum

lines e ^ at thescale�Df ^ @ , theHölderexponentL �	� ^ � , and
thecorrespondingsignof thewavelettransform

�! ��� ^ �
.

4. Experiments with Similarity

Weusedastraightforwardalgorithmto evaluatethesim-
ilarity betweentheh-representations.For eachsetof num-
bersassociatedwith therepresentationfeatureg , we useda
quadraticdistancemeasurewith separatefactorsfor posi-
tion and L exponent,

 I and
 H respectively:

+ g��YhKi
�	� ";L �j
 % �k�  I5lmI � P  H l H � � "

wherel I 

�n�o� ^
and l H 
 L � L ^ and

� ^ ";L ^ belongto� - therepresentationof thetimeseries.
Therepresentationthusdefinedis suitablefor determin-

ing thedistancemeasurebetweenthetimeseries.A simple
pointwiseproductwill show how thetwo representations� =
and � � , of thetime seriesin handarecorrelatedin thetime�

, and L exponentdomains:

TqpMrMr iKsqt ivu �	� ";L �j
 + g��Yh iKs
��� ";L � + g���h i�u

��� ";L � W (2)

We took the recordsof the exchangeratewith respect
to USD over the period 01/06/73- 21/05/87. It contains
daily recordsof the exchangeratesof five currencieswith
respectto USD: PoundSterling,CanadianDollar, German
Mark, JapaneseYenandSwissFranc.(Somerecordswere
missing- we usedthe last known value to interpolatethe
missingvalues.) Below, in figure 4, we show the plots of
therecords.
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Figure 4. Left above, all the recor ds of the
exchang e rate used, with respect to USD over
the period 01/06/73 - 21/05/87.

All thetimeseriesweredecomposedusingtheMexican
hatwavelet. For each,the % ]w�)� 6 strongestmaximawere
selectedandfor eachof thesemaxima,the following were
retained:thepositionof themaximumat thefine scale,the
estimateof theHölderexponent,thesignof theWT value
at thelocationof themaximumat thefinestscale.
As themeasureof similarity for our examples,we have re-
spectively: x
1) GermanMark(� x ) versusSwissFranc(��y ); total correla-
tion = 0.793370
2) PoundSterling(� = ) versusCanadianDollar(� � ); totalcor-
relation= 0.287755
3) PoundSterling(� = ) versusGermanMark(� x ); totalcorre-
lation= 0.408833
4) PoundSterling(� = ) versusSwissFranc(�Yy ); totalcorrela-
tion = 0.375356
5) CanadianDollar(� � ) versusGermanMark(� x ); total cor-
relation= 0.314108
6) CanadianDollar(� � ) versusSwissFranc(� y ); total corre-
lation= 0.337519.z

Notethatall thesevalueswereobtainedincludingtheendcut-off and
the relatedsingularityat the beginning andat the endof the time series
record.(We hadto padwith zerosin orderto obtainpower of 2 for FFT).
Thesecut-off singularitiesare trivially correlatedfor all time seriesand
addsomebiasto the correlationvalues. For all the above examples,the
cut-off singularitiesaccountfor some{D|~}��5{D| � correlation.
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The pointwise correlations of the correspondingh-
representationsfor the two example pairs are shown in
figure 5. Even at the very low resolution of the h-
representations,the correlationplot conveys relevant tem-
poral informationaboutthe local similarity of time series
matched. The time series � x and � y correlatevery well
acrossthe entiresample. The time series � = and � � only
startto show somesignificantcorrelationafter

��
 6�W ]0] on
thenormalisedtimeaxis.
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Figure 5. Top: German Mark versus Swiss
Franc. Bottom: Pound Sterling versus Cana-
dian Dollar . The pointwise correlation of the
corresponding h-representations is sho wn in
the bottom plots.

A possibleinterpretationis that the time series � x and��y arepermanentlystronglycoupledthroughsomepoliti-
cal/economicallinks. Consideringtheseareboth time se-
ries from the EuropeanUnion, this is not an unlikely rea-
son. On theotherhand,the localisedbeginningof thecor-
relationsbetweenthe � = and � � timeseriesmayhavesome-
thing to do with animportantpolitical/economical/military
eventwhich thentook placeandhascoupledbothcurrency
systemssincethen. Alternatively, andperhapseven more
likely, theeventsreflectedby boththeexchangeratesof the
currenciesin questionmayhave primarily affectedtheref-
erencecurrency, in thiscasetheUSD.

5. Conclusions

We have demonstratedthat through incorporatingthe
conceptof scale(resolution)to the representationof the
timeseries,theWaveletTransformationenablesusto reveal
the scale-wiseorganisation(hierarchy)of features. Since
we are interestedin only the largestfeatures,thesecorre-

spondto eventsat the largestof the scalesof decomposi-
tion. The task of selectingsuch featurescan be accom-
plishedusingthe (predefined)numberof WT maximaap-
pearingabovesomelargest(predefined)scaleof interest.

TheWT allows us to evaluatethescalefreeparameters
of the isolatedsingularevents: relative scale,relative po-
sition, signandtheHölderexponent.We have shown that
a set of suchfeaturescan serve for evaluatingthe (local)
correlationproductfor timeseries.
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